Conjugation of Organoruthenium(II) 3-(1H-Benzimidazol-2-yl)pyrazolo[3,4-b]pyridines and Indolo[3,2-d]benzazepines to Recombinant Human Serum Albumin: a Strategy To Enhance Cytotoxicity in Cancer Cells
- Author(s)
- Iryna Stepanenko, Angela Casini, Fabio Edafe, Maria Novak, Vladimir Arion, Paul J. Dyson, Michael Jakupec, Bernhard Keppler
- Abstract
Following our strategy of coupling cyclin-dependent kinase (Cdk) inhibitors with organometallic moieties to improve their physicochemical properties and bioavailability, five organoruthenium complexes (1c-5c) of the general formula [RuCl(eta(6)-arene)(L)]Cl have been synthesized in which the arene is 4-formylphenoxyacetyl-eta(6)-benzylamide and L is a Cdk inhibitor [3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1-L3) and indolo[3,2-d]benzazepines (L4 and L5)]. All of the compounds were characterized by spectroscopic and analytical methods. Upon prolonged standing (2-3 months) at room temperature, the dimethyl sulfoxide (DMSO) solutions of 1c and 2c-(HCl) afforded residues, which after recrystallization from EtOH and EtOH/H(2)O, respectively, were shown by X-ray diffraction to be cis,cis-[Ru(II)Cl(2)(DMSO)(2)(L1)]center dot H(2)O and mer-[Ru(II)Cl(DMSO)(3)(L2-H)]center dot H(2)O. Compound 5c, with a coordinated amidine unit, undergoes E/Z isomerization in solution. The antiproliferative activities and effects on the cell cycle of the new compounds were evaluated. Complexes 1c-5c are moderately cytotoxic to cancer cells (CH1, SW480, A549, A2780, and A2780cisR cell lines). Therefore, in order to improve their antiproliferative effects, as well as their drug targeting and delivery to cancer cells, 1c-5c were conjugated to recombinant human serum albumin, potentially exploiting the so-called "enhanced permeability and retention" effect that results in the accumulation of macromolecules in tumors. Notably, a marked increase in cytotoxicity of the albumin conjugates was observed in all cases.
- Organisation(s)
- Department of Inorganic Chemistry
- External organisation(s)
- École polytechnique fédérale de Lausanne
- Journal
- Inorganic Chemistry
- Volume
- 50
- Pages
- 12669-12679
- No. of pages
- 11
- ISSN
- 0020-1669
- Publication date
- 2011
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 104003 Inorganic chemistry
- Sustainable Development Goals
- SDG 3 - Good Health and Well-being
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/859ec731-1ec2-4428-ab9b-2499d469b6c9