Identification of Cinnamaldehyde as Most Effective Fatty Acid Uptake Reducing Cinnamon-Derived Compound in Differentiated Caco-2 Cells Compared to Its Structural Analogues Cinnamyl Alcohol, Cinnamic Acid, and Cinnamyl Isobutyrate

Author(s)
Julia K. Hoi, Barbara Lieder, Marc Pignitter, Joachim Hans, Jakob P. Ley, Jory Lietard, Kathrin Hoelz, Mark Somoza, Veronika Somoza
Abstract

Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 μM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 μM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.

Organisation(s)
Department of Physiological Chemistry, Department of Inorganic Chemistry
External organisation(s)
Christian Doppler Research Association, Symrise AG
Journal
Journal of Agricultural and Food Chemistry
Volume
67
Pages
11638-11649
No. of pages
12
ISSN
0021-8561
DOI
https://doi.org/10.1021/acs.jafc.9b04274
Publication date
10-2019
Peer reviewed
Yes
Austrian Fields of Science 2012
104009 Food chemistry
Keywords
ASJC Scopus subject areas
General Agricultural and Biological Sciences, General Chemistry
Portal url
https://ucrisportal.univie.ac.at/en/publications/c57a1e43-2f4f-4a2f-a7a0-63c5d426c439